

Shoreside Electrification: Challenges & Solutions

April 26, 2023

Overview Shoreside Equipment Phase Infrastructure Improvements Shoreside Battery Charge Cycles Emission Reductions and Cost Savings Conclusions

Overview & Background

Objective: Maximize greenhouse gas emissions using currently available power and allow for further reductions as more and greener power becomes available

- * Take advantage of existing grid capacity and shoreside energy storage to get partial zero-emission operations
- * Design infrastructure to simplify long-term improvements

Round Trip Energy & Emissions		
Fuel Consumption (100% diesel)	278	gallons per R/T
Local CO2 Emissions (100% diesel)	6,244	pounds per R/T
Energy Required	4,372	kWh per R/T
Diesel Cost	\$973.00	per R/T
Electric Cost	\$524.64	per R/T
Energy Cost Savings	\$448.36	per R/T
Cost Assumptions		
Diesel Fuel (per gallon)	\$3.50	per gallon
Electric Cost (per kilowatt-hour)	\$0.12	per kWh

Phasing Assumptions

- Phase 1: Currently Available Power
 - Assume 1 MW available
- Phase 2: Increase in available power without major grid improvements
 - Assume 2 MW available
- Phase 3: Grid improvements to allow 100% electric ferry operations
 - Line voltage increase from 12.47 kV to 69 kV
 - New substation on-site

Shoreside Infrastructure

Local Switchgear

Battery Energy Storage Systems

- Standard ISO 20' or 40' Container
- Batteries
- Energy Management System
- Safety, Alarm, and Firefighting Systems

SAFT 20' Container BESS

Kokam 40' Containter BESS

Rapid Charging Systems

- Matched active plug and passive receptacle
- Partially or fully eliminates crew handling power cables
- Reduce time to engage / maximize time for charging
- Control, monitoring, communication, and alarm systems

ABB/ForSea

Cavotech PowerReach

Stemmann Technik FerryCHARGER

Phase 1 Charging Cycle

Phase 2 Charging Cycle

Phase 3 Charging Cycle

Improvements by Phase

Conclusion

- Plug-in hybrid ferry technology can produce immediate cost savings and emission reductions
- Infrastructure can be designed to allow increased zero-emission operations with grid capacity improvements

